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Space radiobiology is an interdisciplinary science that examines the biological
effects of ionizing radiation on humans involved in aerospace missions. The
knowledge of the risk assessment of the health hazard related to human space
exploration is crucial to reducing damages induced to astronauts from galactic
cosmic rays and sun-generated radiation.

Galactic Cosmic Rays (GCR) have been identified as one of the primary
sources of radiation exposure in space. In this context, an accurate
characterization of the possible risk of carcinogenesis induced by exposure to
GCRs particles is a significant concern for human exploratory space missions.
In this talk, the tumour prevalence is used to investigate the effects of Non-
Target Effects (NTE) in predictions of chronic GCR exposure risk. The NTE
model led to a predicted risk 2-fold higher compared to a targeted effects
model. Therefore, it is nowadays accepted that the detrimental effects of
ionizing radiation are not restricted only in the irradiated cells but also to non-
irradiated bystanders or even distant cells manifesting various biological
effects.

In this talk, an extensive study will be presented about the risk increase due to
the Non-Target Effects that the GCRs radiation will imply when added to the
Target one.

Status of the art results will be summarized, recent observations and
theoretical framework presented, and some new hints derived from the data
collected from the AMSO02 detector.

Finally, the possible future development will be highlighted about the possibility
of an accurate estimate of the tumour prevalence function for different
exposure exploratory space mission scenarios.

Key words: Space Radiation, Space Radiobiology, Target Effects, Non-target
Effects, Tumour Prevalence, Galactic Cosmic Ray
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INTRODUCTION

Alpha Magnetic Spectrometer (AMS)
INFN ROMA SAPIENZA RESEARCH GROUP

A.N.Guracho- XXII ICMMB 19-20-21 September 2022 19/09/2022



Alpha Magnetic Spectrometer AMS02

AMS is a particle detector measuring Galactic Cosmic Ray fluxes.
It was installed on the International Space Station (ISS) on May 19, 2011
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The AMS collaboration

(http://ams02.space)

An international collaboration made of 44 Institutes

The AMS02 detector has collected so far
more than Cosmic Rays events.

from America, Asia and Europe

More Info in the AMS-02 webpage:
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https://ams02.space/
https://ams02.space/

SPACE RADIATION
&
ASTRONAUT SAFETY

«To fully understand the relationship between ionizing radiation and biology, and to solve
problems in this field, researchers incorporate fundamentals of biology, physics, astrophysics,

planetary science, and engineering» (crdit : NASA)
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(credit : ESA)

— £ Cosmic Rays Interactions with

the geo-magnetosphere

Earth is a safe place!!!

- Mag netosPhere stops/deflects
99.9% of charged particles

the Earth Atmosphere is
. Ao R ' equivalent to a metal shielding
""""" 5 1 meter thick
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The annual cosmic ray “dose” at sea level is
around 0.27 mSv

<10% of “background radiation”
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Space Radiation composition

- Galactic Cosmic Rays (GCR)

- Particle emitted by the Sun (SEP) during isolated events
- Particle trapped in Earth’s magnetic field (Radiation Belt)
None of the 3 components is constant in time, mainly due to the

solar activity
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Origin of Space Radiation
and Consequent Risk

Trapped radiation in the

geomagnetic sphere SolarBarticle Event

Outside the solar system

(Galactic Cosmic Ray) (Van Allen Belts) (SPE)

Particles Composition Particles Composition Particles Composition
* Protons 87% ¢ Inner Belt (0.2K-8K Km) * Mostly Protons
* Helum 12% = Protons and electrons * Heavy Nuclei also could be present
* Heavy Nuclei (Z>2) 1% * Outer Belt (15K-65K Km)
= Electrons up to 10 MeV

Risks Risks Risks
* Secondary:purticles produced * [ISS or LEO missions interested * Spectrum and duration vary

through fragmentation e Tk s 5
+ Long exposure increases the risk of * Minimal risk i transitions in the * Shielding is effective
Van Allen Belts are kept short

cancer development n Allen Belts ar
* Deeply penetrating * Shielding is effective

¢ Unshielded exposure to alarge
SPE could result in acute radiation
syndrome

From Strigari et Al Front. Public Health, 08 November 2021 | https://doi.org/10.3389/fpubh.2021.733337

Human Space activities must
cope with the high radiation
environment of outer space.
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Dose-Effect Relationship

Crucial point is to predict the toxicity of the

TE dose response

space radiation expected for the
astronauts/space workers and the creation of
reliable mathematical models that describe the
correlation between the exposition to IR and the
possible damages to the organs at risk

NTE dose response

Aim: to implement a platform including
the more reliable dose-effect models for

Biological effect of radiation

space radiation, we developed an ad

hoc software in R-script language e diation doss
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Materials & Methods:. Target Effects vs Non Target Effects

- Non-targeted effects (NTEs) include bystander
effects where cells traversed by heavy ions
transmit oncogenic signals to nearby cells, and
genomic instability in the cell's progeny.

« Studies on the Harderian gland, chromosomal MN, AC
aberrations at low dose and many mechanistic (genomic \w/'
necrosns

Bystander (nontargeted) .,  Direct (targeted) effect
effect i

studies support the NTE model, with evidence of a Deisbrity) e
supra-linear effect at low doses of NTE compared death
to a linear effects for TE .
apoptosis :
« This NTE are expected also at the dose-rates that .AC
occur in space. ‘ (genomic
instability]
adaptaive N

- response necrosis | re—
Non-Targeted Effects Models Predict |
Significantly Higher Mars Mission Cancer Risk

survival

than Targeted Effects Models

F. Cucinotta, Eliedonna E. Cacao * Published 12 May 2017 « Biology, Physics * Scientific Reports

Work in progress at Roma AMS group
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Materials & Methods: Hazard Function for Tumor Prevalence (TP)

Prevalence is the number of people/cell with a
specific disease or condition in a given population
at a specific time. This measure includes both
newly diagnosed and pre-existing cases of the
disease.

Tumor prevalence (TP) is described by a Hazard
function, H, which is dependent on radiation type
for y-rays while for charged particles is dependent
on the charge number (Z), kinetic energy (E) and
fluence (F).
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TP =1—e HZER

H, = Hy+ |a,D + B,D?| = S(D)

Hcp(Z,E,F) = Hy + | ZF + BD?] « S(D)

Where:

» H, represents the background prevalence

» a,and g, are the linear and quadratic coefficient with
dose Induction terms

» X i1s pseudo-biological action cross section taking in
account the particle track structure models

» S(D) is the Cell Survival Probability.

ISTACE), A0, 13



Results: R-script Library includes the most used
Cells Survival Probability models

To be used in the calculation of hazard functions
of Tumor Prevalence.
1. Theory n-target N-hit model (nTNH)
Two special case of nTNH including: . S(D) = e~aD-BD*
* Theory single Target single hit model
(STSH)
* Theory single Target N-hit model (STNH)
2. Theory Linear Quadratic Model (LQ)
3. Linear Quadratic Model modified by hyper- . S(D) = e~aDP-BD*-yD?
radiosensitivity(HRS) effect.

17 SD)=1-(1-B)", B

. S(D) = exp{—a(l + (% — 1) Do

4. Theory Linear Quadratic Cubic Model (LQC) for . S(D) = e~P[1 + (aD(1_e(—/1T)))]£¢
high dose. €
5. Sublesion Theory Repair — misRepair Model (S-
RMR) i - ( . S(D) = e~ mPIP[] 4 ZED (1 — emeritr)] €
6. Sublesion Theory Lethal — potentially lethal .
Model (S-LPL) — T g

7. Sublesion Theory Saturable Repair Model (S-SR) RZRRICIIERC-ERT
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Materials and Methods: Experimental Data Set (Alpen et. al. 1993)

Table 111
Prevalence of Harderian Gland Tumors after Irradiation with
« Gammas 55.5TBg Co60 Proton ions
» Hydrogen with energy 250A, LET 0.4 KeV/um
» Exposition time in between 60 sec. to 120 sec. Number — Atrisk  With Prevalence*

tumors

 |rradiation field is 3 x 5 cm?2.

- Background Prevalence is H, = 0.026 26125

9.3%6.1

195+12.1
30.2+13.7
29.2118.2

Table 11
Prevalence of Harderian Gland Tumors

After 60Co Gamma lrradiation
a1+95% ClI

Number Atrisk  With Prevalence?
tumors (%)

Harderian gland Tear components:

Intraorbital lacrimal gland =\ i

Exorbital lacrimal gland —— —] Liphl e

Posterior facial vein .

Facial nerve st Aqueous layer

Deep masseter muscle '

Superficial masseter muscle (=t (=t —’
|

26125
48*27
93145
13.71£6.2

322185
46.2+13.6

Mucous layer

Anterior facial vein
Lacrimal gland — Corneal epithelium
Facial vein

21+95% CI
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Hazard Function

Targe Effect (TE) vs Non-Target Effects (NTE)

The NTE model assumes a non-linear _ )
type response in addition to the linear Hyg(Z,E,F) = Hy + [Z'F + D ] xS

dose term at low doses.

Hyrg(Z,E,F) = |Hy+ ZF + BD* + 5| * S

The n function represents the NTE

: : A L L — —n4L —N
contribution, which is parameterized as n =mnole M*[1 — e "BYs]
a function of the particle Linear Energy Wh
Transfer (L). ere. _ .

L) L is the Linear Energy Transfer of the particle
Npg,s Is the number of bystander
We tuned the radiobiological Npys = Fluence x Apy;
' Ag, s 1S an area corresponding to the number of bystander

parameters to mpmduce available cells surrounding a ce||ol travegr]sed directly from a HZE

experimental data particle that receive an oncogenic signal.
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Results: Effective Pseudo-Biological Action Cross Section

s
ayL (— )
Bz E) = 2Rz, ) IR YRR (2, B = [ e &
- 6.24 ( z*z)
0.55%0.4 A
2(1,250) = X,P(Z,E) + = [1 — P(1,250)], P(1,250) = [1 — e\ k&/]3
Doce = (01, 11144 22 042, 33,022, 44717, 88,246, 193.508), Using the experimental
TP =¢(0.026, 0.051, 0.081, 0.127, 0.176, 0.322, 0.462)
Where %]-r-f-lt-cl\?lzglgzgtiz(j?;2[?4052332'2%{--?-3#2551 Pr=00182 data Of gamma irradiation
* X, and k are parameters of his cellular track structure e we calculate the a , B,
model

induction term
* a, is the linear regression coefficient for acute doses
of y-rays for the same endpoint

o
(o))

* 7™ is the effective charge number of the particle,

* VC is the particle velocity relative to the velocity of
light

o
=~

—_
o
o
s
=
=
—
@
x}
c
£
©
>
v
1=
o
1)
@)
S
S
l—

o
)

* m Is the number of target in a single cell

: : 4
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Results: ay; and f; Calculation

_ 1 _ »—Hy(1,250,F) : :
=il Scagd Using the experimental data of 250A MeV Hydrogen
Hrp(1,250,F) = 0.026 + [E(1,250)  F + 0.1092 « D2] + S irradiation we calculate the ay , B induction term

Fig 2.1 Tumor Prevalence for Hydrogen lens (Proton)

Dose = ¢(0, 0.397, 0.799, 1.602, 3.2),

TP =¢(0.028, 0.093, 0.195, 0.303, 0.293)

Our fit coefficients (H0) = 0.026 , aH = 0.1249 , BH = 0.1092

Hyre(1,250,F) = 0.026 + [£(1,250) = F + 0.1092 « D? + 1] » S |

0.8

Ny = 0.00048  0.4¢~000281:04 7 _ o=216+F]

o
@

B, =0.1092
Where:

o
~

* B IS the quadratic coefficient with dose Induction terms,
irradiation for hydrogen

—_
o
o
-
3
&
-~
Q
Q
c
2
[
>
[
=
o
—
Q
£
3
[

0.2

For the cell survival probability is used the target theory n-target
N-hit model (nTNH) withn =3, N =1

Dose (Gy)
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Results: TE vs NTE for Proton

Calculation of the TE and NTE TP models showing
for Proton 250A MeV there is no relevant
differences in the tumor Prevalence versus dose as
expected (NTE models predict same tumor

prevalence at low doses compared to the TE model).

Fig 2.4 Comparison of targeted effects (TE) and non-targeted effects
(NTE) models for proton beams to the experiment of Alpen et al.12 for the dose response
for Harderian gland tumor prevalence. Results show NTE are small for low LET particle beams
TP = 1-exp(-Hazard(D))
H(D) = (HO + Sigmaf_NTE*Fluence + Betaf_NTEs*(Dose)'2 + Eta_f)*S_NTEs

KE=250 , Sigma0TE=85.63 , alphagamma=0.055 , BetaH=0.10924 7184296719 , H0=0.0286,
DO= 26 n=3,N=1, m=3,
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Fig 2.4.1 Comparison of targeted effects (TE) and non-targeted effects
(NTE) models for proton beams to the experiment of Alpen et al.12 for the dose response

for Harderian gland tumor prevalence. Results show NTE are small for low LET particle beams.
TP = 1-exp(-Hazard(D))

H(D) = (HO + Sigmaf_NTE*Fluence + Betaf_NTEs*(Dose)"2 + Eta_f)"S_NTEs

KE=250, SigmaOTE=85.63 , alphagamma=0.055 , BetaH=0.109747184296719 , H0=0.026 ,
D0=2.6 ,n=3,N=1,

m=3,
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The shape of the tumor response curve found in the NTE
model is shallow non-linear dose responses curve. It has
Important implications for space travel because would alter
how mission design factors such as duration and radiation
shielding are analyzed for radiation protection purposes.
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Results: Tool for NTE components evaluation

Calculation of the NTE with
different models and for

different exposition scenarios

AMS CRs Data

A.N.Guracho- XXII ICMMB 19-20-21 September 2022 19/09/2022

20



Summary

We developed an ad hoc software in R-script language for Tumor Prevalence risk
calculation including the more reliable dose-effect models for space radiation

An r-script library with different Cell Survival Probability models was developed to
be used in the calculation of hazard functions of Tumor Prevalence.

Using the software and the experimental data set of Harderian Gland Tumor we tune
all the parameter for the Tumor Prevalence Model for protons and we show that there
are no substantial differences between the Target and Non-Target Effect as expected.

In the future, we extend the analysis to heavy ions, and we will use the data collected
from the AMS02 detector to increase the modelling accuracy and risk prediction.
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https://loop.frontiersin.org/people/1616312/overview
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