

Standard Configuration

- ♦ Fibers+PMT+Readout electronics
 - Relevant parameters: light from fibers/PMT signale (DY12 is sull of all dinodes)/electronics saturation
- ♦ Large noise observed
 - ♦ Readout dinamic range limits signal on PMT to ~1V
 - Large noise induced on the PMT+Electronics chain when laser+gas are present → Plasma related
 - → In design conditions of screening noise ~1V peak-to-peak
 - ♦ In absence of either gas or laser noise negligible (few mV)
 - With simple improvements in screening (with aluminium foil) and getting further away from the interaction point we obtained a reduction of a factor 4

A Threefold Way

1. Develop a backup detector reading fibers with CCD instead of PMT

2. Study the nature of the noise

- 3. Make the default detector work:
 - 1. Screening
 - 2. Dynamic range

Noise studies

Config A	Config B	Amp(A)/Amp(B)
HV=500V piano interazione	HV=500V piano interazione	0.63
HV=0V	HV=500V	0.64
no HV cable	HV=500V	0.64
HV=500V WRAPPED?	HV=500V	0.91
HV=500V MAROC ON	HV=500V	0.97
HV=500V PMT orientato nel verso del laser	HV=500V	0.45
HV=0V	HV=500V	0.48
HV= on, posizione canonica	HV=500V	0.20
Nel pozzetto di Pb sul magnete, B=0.05T	Vicino sul magnete	0.11
Nel pozzetto di Pb sul magnete (connesso maroc) B=0.1T	Dietro al muro	0.42

Conclusions:

- ♦ HV and p.s. irrelevant
- lead shield improves by a factor 6
- behind the wall improves by a factor 9

New idea

Idea: push the PMT HV to have a larger signal and attenuate it (a factor 10?) before entering the MAROC

Considerations:

- * maroc response: 30ADC/mV
- ♦ Saturation: 700ADC/channel → 23 mV/ch (!) →1.5V/ PMT
- ♦ At which level does the PMT saturate? Which is the correct attenuation coefficient?

Fibers + CCD

* Making use of existing cameras and read-out software we have developed the code to extract the light per fiber and translate it into an energy spectrum

Difficulties:

- definition of boxes
- Noise subtraction
- Interacalibration between cameras

Proof that it works in the next slides

Immagini LANEX @ 30cm dal gas

B = 50mT

B = 100mT

B = 150mT

Fibers+CCD

- ♦ Ongoing activity: hardware
 - ♦ Bought two new cameras
 - → Installation is a semi-permanent configuration (awaiting for default DAQ to work) and design of supports
 - ♦ Integration of DAQ in the SPARC control system
- ♦ Ongoing activity: software
 - → Improve algorithm for noise subtraction
 - ♦ Improve intercalibration

Study of the nature of noise

- Meeting with Ruggero Ricci and Valerio Bocci and Riccardo Lunadei from the Roma1 Electronic LAB
 - ♦ Measure current on plate and loop di distinguish between capacitive and inductive components
 - ♦ Measure noise in absence of electric connection between the interaction and spectrometer chambers
 - ♦ Improve grounding (reference ground cable now available)
- ♦ From literature largest component is in the THz range. Contacting THz experts in Roma1 (Lupi and Calvani) to investigate the problem

Future of "default" detector

- ♦ Improve screening/grounding:
 - ♦ Mu-metal

 - ♦ Screen also cables
 - ♦ Use single reference ground for everything
- ♦ Distance
 - ♦ Fibers to prolong 4-5 meters away are available
- ♦ Increase dynamic range
 - ♦ Change electronics (move to standard ADC)
 - ♦ Expensive ... last resort