Simulation of optical processes in GEANT4

Ralph Dollan DESY - ZEUTHEN

Outline

First part

 Results of experiments to measure the lightlyield of two different material samples

Second part

 Simulations of the Photontransport in scintillator/leadglass samples and wavelenghtshifting fibers with GEANT4

Longitudinal Segmentation

BICRON BCF-91A - Fibers

Experiment

Direct readout vs. fiber readout (BC-408)

Experimental - Results

Plastic Scintillator

Direct readout : (QE_{PMT} 25 ± 1 %) Photoelectrons : 390 ± 50 p.e. / μ Lightyield : 1560 ± 260 photons / μ

Fiber readout : (QE_{PMT} 13 ± 2 %) Photoelectrons : 27 ± 4 p.e. / μ Lightyield : 210 ± 60 photons / μ

Lightyield reduced to 14 ± 4 %

Leadglass

Direct readout : $(QE_{PMT} 15 \pm 2 \%)$ Photoelectrons : 18.2 ± 2.2 p.e. / μ Lightyield : 120 ± 30 photons / μ

Fiber readout : $(QE_{PMT} 13 \pm 2 \%)$ Photoelectrons : 2.4 ± 0.5 p.e. / μ Lightyield : 19 ± 7 photons / μ

> Light yield reduced to 16 \pm 7 %

Simulation - Motivation

To simulate the behavior of Scintillator-samples, optical processes provided by GEANT4 have to be understood:

- Scintillation
- Čerenkov radiation
- Transport of optical photons in the medium
- Reflection
- Scattering
- photons at material boundaries
- Absorption
- Reemission
- wavelength shifting

24 February, 2005

R. Dollan

Relevant processes for optical photons

Process	Geant4 source	
Cerenkov	processes/electromagnetic/xray -> G4Cerenkov	
Scintillation	<pre>processes/electromagnetic/xray -> G4Scintillation</pre>	
OpBoundary	processes/optical -> G40pBoundary	
OpAbsorption	processes/optical -> G40pAbsorption	
OpRayleigh	processes/optical -> G40pRayleigh	
OpWLS	processes/optical -> G40pWLS	since GEANT4 6.0
(Transportation)		

Needed

Material properties:

- atomic composition of the materials used
- refractive index
- absorption length (-spectrum)
- scintillation yield (slow/fast)
- scintillation time constant (slow/fast)
- absorption-, emission-spectra of WLS-materials
- time constants of WLS-materials

Known:

- over all refractive index
- over all absorption length
- (rel. Emission-, Absorption spectrum)
- (scintillation yield)
- time constants

Scintillation

WLS

Geometry

Frontview

Sideview, both sides open

Sideview, one side open

Front view - Photons in the Fiber

Scintillation yield ~50/MeV

PMT positions

Bc_direct_3a

Bc_fiber_3a

Bc_direct_3a_pmt

Bc_fiber_3a_pmt

Lg_direct

Lg_fiber

Lg_direct_pmt

R. Dollan

Lg_fiber_pmt

Simulation - Results

Plastic Scintillator

(exp.): Lightyield reduced to 14 ± 4 %

(sim.): Lightyield reduced to 9.3 - 9.8 %

Leadglass

(exp.): Light yield reduced to 16 $\pm~7~\%$

(sim.): Lightyield reduced to 8.3 - 12 %

Summary

This is a first look - can be improved !!!

 for a first naive look - nice agreement between exp. and sim. results

For a realistic Simulation:

- implementation of realistic boundary and surface conditions of the materials/samples
- exact WLS-Absorption spectrum
- good knowledge of Absorption-, Emission behaviour of the materials
- material composition data
- these simulation studies continue
- V. Drugakov -> Simulation of a block of crystals